TinkerCAD 與電子綫路

預備工作

請先在 https://www.tinkercad.com/ 於 "立刻加入" 開設自己的賬戶並登入網站:

圖 0-1 Tinkercad 網站

在 Tinkercad 網站裏,你會發現有不同種類的課題可供發揮我們的創意,例如:3D 設計、Circuit(電子綫路的設計)、程式碼區塊等等。當中 "Circuit" 電子綫路的實驗,可使用有很多不同的元件拼拼有趣的電路。

圖 0-2 Tinkercad Circuit 部分

熱身活動: 觀察麵包板

在左邊一欄,選擇 "Circuit" 然後建立新電路

圖 0-3 Tinkercad 麵包板

在元件部分,找出麵包板並將它拉至旁邊 的空白處。你可以觀察一下麵包板的設 計,你會發現當中每5個孔一排,內部的 電路是連通的。例如:第一行的 abcde 孔,全部相通;


```
圖 0-4 Tinkercad 麵包板
```

而兩側電源的匯流排,是供給正負極延伸整塊麵包板。你會發現最左右兩側的孔是豎 直相通,而中間 5 孔相連的則是打橫相通。

圖 0-5 Tinkercad 麵包板正負極

啓動你的 Arduino UNO 主控板【LED 閃燈測試】

圖 0-6 Tinkercad 麵包板、LED 和 Arduino UNO

接駁綫路

零件	脚位
LED正極(長脚)	D13
LED負極(短脚)	GND

在 TinkerCad 建立並模擬電子綫路運作

零件:

Arduino UNO 主控板
麵包板
LED 燈

程式解碼:

設定LED燈亮一秒,然後關一秒

挑戰站:

設定LED燈亮三秒,然後關半秒

綫路接駁圖:

圖 0-7 Tinkercad 綫路接駁

完成電子綫路接駁後·點開"程式碼"·你會看到"圖塊"形式的積木程式。如果想 查看**文字版的"程式碼"**可在下方選擇同時顯示"圖像+文字"的程式碼·需要 注意的是查看"文字版"程式碼時·圖像化的積木程式會被刪除。

圖 0-8 Tinkercad 綫路產生圖塊和文字程式碼

Arduino 軟件圖示:

文字程式碼複製至 Arduino IDE

1. 將 Tinkercad 内的文字程式碼複製,並貼上 Arduino IDE 軟件上。

打開 Arduino IDE 後的畫面:

2. 選擇 "Tools" · 選擇適合的處理器(Arduino UNO)

💿 sketch_nov30k	Arduino 1.8.12	- 0	boards manager		
File Edit Sketc			Δ		
	Auto Format	Ctrl+T	Arduino SAMD (32-bits ARM Cortex-M0+) Boards		
	Archive Sketch		Arduino Zero (Programming Port)		
sketch_nov30b	Fix Encoding & Reload		Arduino Zero (Native USB Port)		
void setup() (Manage Libraries	Ctrl+Shift+I	Arduino MKR1000		
// put your	Serial Monitor	Ctrl+Shift+M	Arduino MKRZERO		
,	Serial Plotter	Ctrl+Shift+L	Arduino MKR WiFi 1010		
1			Arduino NANO 33 IoT		
<pre>void loop() {</pre>	WiFi101 / WiFiNINA Firmware Upda	ter	Arduino MKR FOX 1200		
// put your	Board: "Arduino Uno" 🛛 🔸		Arduino MKR WAN 1300		選擇 "Board"
1	Port: "COM6"	;	Arduino MKR WAN 1310		
·	Get Board Info		Arduino MKR GSM 1400		
	Des services "Andring as ICD"		Arduino MKR NB 1500		
	Programmer: Arduino as ISP	,	Arduino MKR Vidor 4000		
L	Burn Bootloader		Adafruit Circuit Playground Express		
			Arduino M0 Pro (Programming Port)		
			Arduino M0 Pro (Native USB Port)		
			Arduino M0		
			Arduino Tian		
			Arduino AVR Boards		
			Arduino Yún	·弫 / 罜	"Arduino UNO"
			 Arduino Uno 	医痒	Aluuno ono
			Arduino Duemilanove or Diecimila		
			Arduino Duemilanove or Diecimila Arduino Nano		
			Arduino Duemilanove or Diecimila Arduino Nano Arduino Mega or Mega 2560		
8		Arduino Uno on C	Arduino Duemilanove or Diecimila Arduino Nano Arduino Mega or Mega 2560 Arduino Mega ADK		
8		Arduino Uno on Ci	Arduino Duemilanove or Diecimila Arduino Nano Arduino Mega or Mega 2560 Arduino Mega ADK Arduino Leonardo		
8	-	Arduino Uno on Co	Arduino Duemilanove or Diecimila Arduino Nano Arduino Mega or Mega 2560 Arduino Mega ADK Arduino Leonardo Arduino Leonardo ETH		
8		Arduine Une en Ci	Arduino Duemilanove or Diecimila Arduino Nano Arduino Mega or Mega 2560 Arduino Mega ADK Arduino Leonardo Arduino Leonardo ETH Arduino Micro		
8		Arduine Une en Ci	Arduino Duemilanove or Diecimila Arduino Nano Arduino Mega or Mega 2560 Arduino Mega ADK Arduino Leonardo Arduino Leonardo ETH Arduino Micro Arduino Esplora		
8		Arduino Uno en Ci	Arduino Duemilanove or Diecimila Arduino Nano Arduino Mega or Mega 2560 Arduino Mega ADK Arduino Leonardo Arduino Leonardo ETH Arduino Micro Arduino Esplora Arduino Mini		
8		Arduino Uno on Ci	Arduino Duemilanove or Diecimila Arduino Nano Arduino Mega or Mega 2560 Arduino Mega ADK Arduino Leonardo Arduino Leonardo ETH Arduino Micro Arduino Esplora Arduino Esplora		
8		Arduino Uno on Ci	Arduino Duemilanove or Diecimila Arduino Nano Arduino Mega or Mega 2560 Arduino Mega ADK Arduino Leonardo Arduino Leonardo ETH Arduino Micro Arduino Esplora Arduino Esplora Arduino Ethernet Arduino Ethernet		
8		Arduino Une en Ci	Arduino Duemilanove or Diecimila Arduino Nano Arduino Mega or Mega 2560 Arduino Mega ADK Arduino Leonardo Arduino Leonardo ETH Arduino Micro Arduino Esplora Arduino Esplora Arduino Ethernet Arduino Fio Arduino BT		
8		Arduino Uno on Ci	Arduino Duemilanove or Diecimila Arduino Nano Arduino Mega or Mega 2560 Arduino Mega ADK Arduino Leonardo Arduino Leonardo ETH Arduino Micro Arduino Esplora Arduino Esplora Arduino Ethernet Arduino Ethernet Arduino BT LilyPad Arduino USB		

3. 選擇 "Port", 選擇數字較大的 Port

電腦内的 Arduino IDE 軟件與 Arduino 連接後,就可以將程式下載至主控板内。

程式上載至 Arduino UNO 硬件

1. 檢查程式

2. 上載程式至 Arduino UNO

人體感應燈

元件部分:紅外線動作感測器(Passive InfraRed sensor)、繼電器、LED 燈 所需零件:

圖 錯誤!所指定的樣式的文字不存在文件中。-1 Tinkercad 元件圖示

紅外線動作感測器 (Passive InfraRed sensor/ PIR Sensor) 原理:

紅外線動作感測器透過感測人體或動物的體溫紅外綫·經過球狀的菲涅耳透鏡 (Fresnel Lens)聚光和濾波感應指定範圍的環境溫度變化·繼而發出信號。

圖 錯誤!所指定的樣式的文字不存在文件中。-2 Tinkercad 綫路接駁

在啓動此裝置時,我們需要按下右上角"開始模擬"

圖 錯誤! 所指定的樣式的文字不存在文件中。-3 Tinkercad "開始模擬"

開始模擬後,你會看到 PIR 感測器前面會出現扇形的感測範圍。在這個元件的規格, 它的感測範圍大概在2米以內改變。若阻礙物在 PIR 感測器綠色圓點的位置出現,它 會驅動 LED 燈亮起,而阻礙物不在2米範圍內,便不會被偵測,從而 LED 燈會保持 關閉狀態。

圖 錯誤!所指定的樣式的文字不存在文件中。-4 Tinkercad 紅外綫感測器模擬

有了模擬電路的經驗,我們可著手組裝 PIR 感測器與 Arduino 的電路設計,並加入編 程部分,使 PIR 感測器應用在不同的地方。

圖 錯誤!所指定的樣式的文字不存在文件中。→5 Arduino + PIR sensor Tinkercad 電子綫路接駁

Arduino 的數位脚位 13 連接到 LED 燈,我們需要外加一粒電阻以保護 LED 燈,避免 被過大電流損害,電阻數值大概是 220 歐姆。

表 1-1 零件脚位對應表

脚位(Arduino Uno)	零件
5V	紅外綫感測器 Vin
GND	紅外綫感測器 GND
D2	紅外綫感測器 digital out
D13	LED

積木程式參考:

圖 錯誤!所指定的樣式的文字不存在文件中。-6 Arduino + PIR sensor 積木程式碼

程式拆解:

表 1-2 文字程式碼解釋

int sensorState = 0;	將 PIR 感測器的輸出設定為整數並清零;
	設定部分:
void setup()	♦ LED 脚位連接到 Arduino 數位脚位
{	13 · 作爲輸出;
pinMode(2, INPUT);	◇ PIR 感測器的脚位連接到 Arduino 數
pinMode(13, OUTPUT);	位脚位 2 · 作爲輸入;
Serial.begin(9600);	◆ 設定通訊速率 (baud rate)為每秒
	9600 bits ;
}	循環部分:
	PIR 感測器 = 數位脚位 2 ;
void loop()	
{	如果 PIR 感測器輸入為高,即是 1,數位脚
sensorState = digitalRead(2);	位 13(LED)會輸出為高 · 即是 1 · LED
if (sensorState == HIGH) {	燈會亮起;
digitalWrite(13, HIGH);	
Serial.println("Sensor activated!");	否則・LED 燈會輸出為低・即是 0・LED 燈
} else {	會保持關閉狀態;
digitalWrite(13, LOW);	
}	10 毫秒後再重複一次整個程式。
delay(10);	
}	

100 to + 12 122		CT 123/00	1 (Arduine Line P2)
HELL - (24) HEL - (24) HELPH - (24) <	BM EXECUTION BM EXECUTION	<pre>i int #emacritate = 0; void setup() { pinkode(3, SUPCT); pinkode(3, SUPCT); derial.begin(9600); } void loop() { (MacRet(MR)(eria) f (secontate = digitalRed(3); f (secontate = digitalRed(3); f (secontate = digitalRed(3); digitalRet(3, LOM); digitalRet(3, LOM); digitalRet(3, LOM); digitalRet(3, LOM); digitalRet(3, LOM); } digitalRet(3, LOM); } </pre>); 美的 - LED重約使用料為 Wated ^{1*}); hit to improve simulat

從電子綫路接駁到積木程式的編寫,再將文字程式碼產生到 Arduino IDE 的過程:

圖 1-7 文字程式碼產生過程

軟件部分

1. 完成積木程式編寫後, 複製 Tinkercad 產生的文字程式

TIN KER PIR Motion Sensor with Arduin	no		已儲	存	•
≤\ 10 ← ≁ 🗉 🥸		【 程式碼	▶ 開始模擬	匯出	共用
- 圖塊 + 文字	<u>↓</u> 🖨 🗼			1 (Arduino U	no R3) 🔻
 輸出 控制 控制 較入 数學 標記符號 愛數 將按題 ● 総次題 ● ● 総次題 ● ●<td>註解 韻取數位接腳2(PIR) 將 sensorState • 設定為 僅 註解 如果數位接腳輸入為高,則是 如果 sensorState = • 將內建 LED 設為 高 • 列印到串列監視器 Sensor active 高別 用列串列監視器 Sensor active 百 一</td><td><pre>int sensorState = 0 void setup() { pinMode(2, INPUT) pinMode(13, OUTPU Serial.begin(9600) void loop() { void loop() { // 請取數位接題2(PI sensorState = dig // 如果數位接題Wite(13 // 如果數位接题IDPITIE(13 Serial.println() else {</pre></td><td>; ; ; ; ; ; ; ; ; ; ; ; ; ;</td><td>; 否則,LED@ Mated!"); Dit to impr</td><th>暨於熄滅狀態 ove simulat.</th>	註解 韻取數位接腳2(PIR) 將 sensorState • 設定為 僅 註解 如果數位接腳輸入為高,則是 如果 sensorState = • 將內建 LED 設為 高 • 列印到串列監視器 Sensor active 高別 用列串列監視器 Sensor active 百 一	<pre>int sensorState = 0 void setup() { pinMode(2, INPUT) pinMode(13, OUTPU Serial.begin(9600) void loop() { void loop() { // 請取數位接題2(PI sensorState = dig // 如果數位接題Wite(13 // 如果數位接题IDPITIE(13 Serial.println() else {</pre>	; ; ; ; ; ; ; ; ; ; ; ; ; ;	; 否則,LED@ Mated!"); Dit to impr	暨於熄滅狀態 ove simulat.

圖 1-8 積木程式產生文字程式碼

2. 將文字程式碼貼上 Arduino IDE

圖 1-9 複製文字程式碼至 Arduino IDE

3. 確保 Arduino IDE 軟件與 Arduino UNO 連接後,將程式上載到 Arduino UNO 硬件上。

圖 1-10 Arduino UNO 上傳狀態

接脚對應表

脚位(Arduino Uno)	零件
5V	紅外綫感測器 Vin
GND	紅外綫感測器 GND
D2	紅外綫感測器 digital out
D13	LED

表 1-3 接脚對應表

硬件部分

4.1 零件接駁——彩虹綫與 PIR 感測器

圖 1-11 彩虹綫與紅外綫感測器接駁

*注意彩虹綫有不同的款式

取出公母彩虹綫,將母頭插在 PIR 感測器上的脚位;

4.2 紅外綫感測器加入麵包板

- 注意三條彩虹綫位置
- 麵包板應用:

Abcde 孔相通; fghij 相通; 數字不相通(1-30) 例如: 2a 和 2e 相通; 2a 和 3a 不相通

同學應將每一條綫的顏色與對應的脚位記下,方便駁綫和 Debug 例如: 藍色綫是 5V;紫色綫是 D2; 灰色綫是 GND

圖 1-13 紅外綫感測器對應接脚

4.3 接駁至 Arduino UNO

圖 1-14 相應的脚位接駁

4.4 加入 LED 燈

圖 1-15 Arduino UNO 加入 LED 燈於 D13

5. 完成電子零件接駁——測試功能

圖 1-16 電子零件接駁完成圖