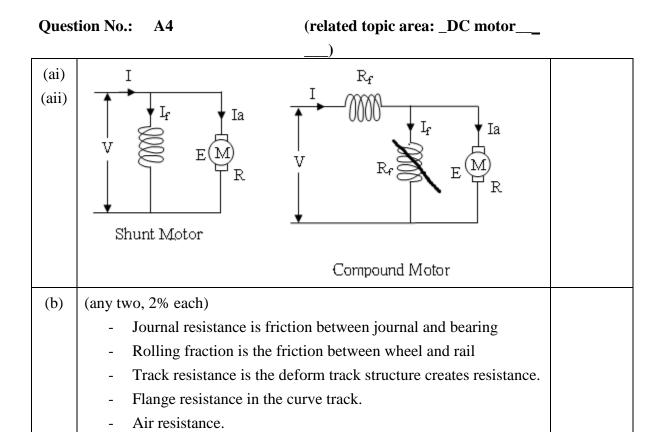
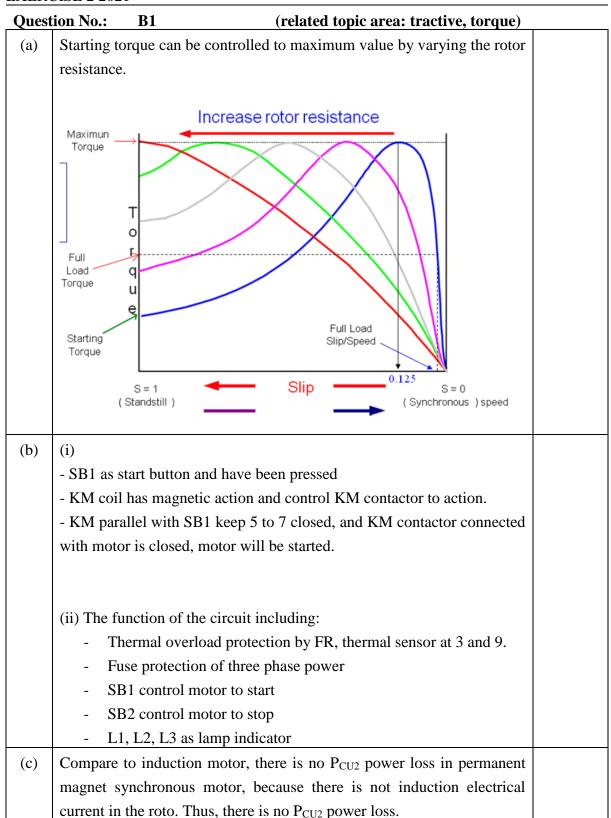

EXERCISE 1 2021

Question No.: A1 (related topic area: DC drives)

(ai)	For wave wound : $E=2ZN \Phi P/60C = (2 \times 30 \times 8 \times 1200 \times 0.0174 \times 3)/(2 \times 60) = 250.56V$	
(aii)	For Lap wound: $E=2ZN \Phi P/60C = (2 \times 30 \times 8 \times 1200 \times 0.0174 \times 3)/(2 \times 3 \times 60) = 83.52V$	
(b)	 DC machine consist of: Stator, field pole, this part of the machine does not move and normally is the outer frame of the machine. Rotor, armature, this part of the machine is free to move and normally is the inner part of the machine. 	


Question No.: A2 (related topic area: ind. motor)

<u> </u>	uesuon 110	A2 (Telated topic area. ind. motor)
(a	Stator co	pper loss is current flows in the primary circuit, heat is produced
	in the sta	ator conductor as copper loss.
(t) Iron loss	s is hysteresis and eddy current losses.
(0	Rotor co	pper loss is the current in the rotor winding cause copper loss.
(c	l) Mechani	cal losses is due to electrical energy is converted to mechanical
	energy, e	energy lost as friction and windage losses.


Question No.: A3 (related topic area: AC motor)

Zucs	(related topic area: I've motor)	
(ai)	The synchronous speed is:	
	$N_S = \frac{60 \times 50}{2} = \underbrace{\frac{1500rpm}{2}}$	
(aii)	Speed of the rotor at full load condition is:	
	$N_r = (1-s)xN_s = (1-3\%)x1500 = \underline{1455rpm}$	
(b)	(any two of the following)	
	1.Suppressing emissions	
	Proper layout with EM conceptUsing component with low edge rate as possible	
	2. Reducing the efficient of the coupling path	
	- Using shielded enclosure	
	3. Reducing the susceptibility of the receptor	
	- Differential pairs	
	- Error-correcting code	

Question No.: A5		A5	(related topic area: _Tractive)	
		= 400V, N=1500rpm, i	input power=1000W,	
	$I_{sh}=1A, R$.a=0.2Ω		
(:)	Line curre	ent at no load = $1000 /$	400 = 2.5A	
(i)				
(ii)	Armature current at no load = $2.5 - 1 = 1.5$ A			
(iii)	Armature copper loss at no load (Ia^2Ra) = 1.5 ² × 0.2 = 0.45W			
(iv)	(iv) Constant loss = $1000 - 0.45 = 999.55$ W		999.55W	
For maximum efficiency, constant loss = variable loss		ant loss = variable loss		
	If Ia be the armature current at maximum efficiency condition then		maximum efficiency condition then	
	$Ia^2 \times 0.2 = 999.55$ where $Ia = 70.69A$			
	Line current = $70.69 + 1 = 71.69A$			
(v)	At maxim	num efficiency, total lo	$ss = 2 \times 999.55 = 1999.1W$	
	Input pow	$ver = 400 \times 71.69 = 28$	8676W	
	Maximum efficiency = $(28676 - 1999.1)/28676 = 0.93 = 93\%$			

EXERCISE 2 2021

Quest	ion No.:	B2 (related topic area: EMC, drives)
(ai)	A diode	e is a two-layer semiconductor device.
	If a rever	rse voltage is applied across the diode, tt behaves
	essential	ly as an open circuit.
	If a forw	ard voltage is applied, it starts conducting and behaves
	essential	ly as a close switch.
(aii)	IGBT is	a hybrid power semiconductor device which combines the
	attributes	s of the BJT and the MOSFET. It has a MOSFET type gate
	and there	efore has a high input impedance. The gate is voltage
	driven. I	GBT has low on-state voltage drop similar to BJT.
(b)	EN5012	1-1-X series is subdivided into parts:
	1. P	art 1 provides a general introduction, describes the railway
	e	nvironment and defines the management of EMC between
	re	olling stock and the infrastructure; it calls upon EN 50238.
	2. P	art 2 is concerned with the interface between the railway
	S	ystem and the outside world. It defines limits of emissions
	a	nd appropriate measurement techniques.
	3. P	art 3 is sub-divided.
		- 3-1 covers the train and complete vehicle, emission
		limits and measurement techniques are defined.
		- 3-2 covers train-borne apparatus. Emission limits,
		immunity levels and measurement methods are
		specified. This standard also defines, immunity
		criteria, which in general are more stringent than the
		generic standards.
	4. P	art 4 covers signaling and telecommunication apparatus.
	E	Emission limits, immunity levels and measurement methods
	a	re specified. Part 4 is also the part that any other
	a	pparatus that does not fit into the other parts is tested to.
	5. P	art 5 covers fixed power supply apparatus and installations,
	fe	or example traction sub stations.

Quest	Question No.: B3 (related topic area: Drives, operating)		
(a)	At starting, the back emf Ea is equal to zero. The starting current		
	will be very large $\frac{(V_t - V_{Brush} - E_a)}{Ra}$ and damage the brush and the		
	armature winding. Therefore, additional resistors need to be inserted in series with the armature windings for reducing the starting current.		
	D 120000		
(bi)	The output current, It = $\frac{Po}{V} = \frac{120000}{375} = \underline{320A}$		
(bii)	The field circuit current, $I_f = \frac{Pf}{V} = \frac{2000}{375} = \underline{5.33A}$		
(biii)	The armature current, $Ia = I_t + I_f = 320 + 5.33 = \underline{325.33A}$		
(biv)	The armature resistance, Ra = $\frac{Pa}{Ia^2} = \frac{8000}{325.33^2} = \underline{0.0756\Omega}$		
(bv)	The field circuit resistance, Rf = $\frac{V_t}{I_f} = \frac{375}{5.33} = \frac{70.36\Omega}{1}$		
(bvi)	The driven electromagnetic torque, $T = \frac{EaIa}{2\pi Nr} = \frac{(V + IaRa) \times Ia}{2\pi \times 1210/60}$		
	$= \frac{(375 + 325.33 \times 0.0756) \times 325.33}{2\pi \times 1210/60} = \underline{1026Nm}$		